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Abstract

Automatic performance tuning of computationally intensive kernels in scientific ap-

plications is a promising approach to achieving good performance on different machines

while preserving the kernel implementation’s readability and portability. A major bot-

tleneck in automatic performance tuning is the computation time required to test a

large number of possible code variants, which grows exponentially with the number of

tuning parameters. Consequently, the design, development, and analysis of effective

search techniques capable of quickly finding high-performing parameter configurations

have gained significant attention in recent years. An important element needed for

this research is a collection of test problems that allow performance engineering and

mathematical optimization researchers to conduct rigorous algorithmic development

and experimental studies. In this paper, we describe a set of extensible and portable

search problems in automatic performance tuning (SPAPT) whose goal is to aid in

the development and improvement of search strategies. SPAPT contains representative

serial code implementations from a number of lower-level performance-tuning tasks in

scientific applications. We present an illustrative experimental study on several prob-

lems from the test suite. We discuss important issues such as modeling, search space

characteristics, and performance objectives.

1 Introduction

The landscape of scientific application programming is undergoing rapid changes as a result

of increasingly complex machines and the quest for high performance on these machines.

Chasing performance gains through manual tuning becomes a complex and time-consuming

process that is neither scalable nor portable. Automatic performance tuning (in short,

autotuning), or empirical performance tuning, is a promising and viable approach to address

the limitations of manual tuning. Autotuning involves three major phases: identifying

code optimization techniques that are relevant to the given code and machine, assigning a

range of parameter values using hardware expertise and application-specific knowledge, and

searching the parameter space to find the best-performing parameter configuration for the

given machine. In recent years, this has emerged as an effective approach to tune scientific

kernels for both serial and multicore processors [1].
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A major bottleneck in large-scale autotuning is the prohibitively large computation time

required when searching for high-performing parameter configurations in a large search

space. Hence, popular search algorithms such as random search, Nelder-Mead, simulated

annealing, and genetic algorithms are used to examine a small subset of possible configu-

rations. In [2], we showed that the search problem arising in autotuning can be formulated

as a mathematical optimization problem, and we illustrated the potential for mathematical

optimization algorithms to find high-performing tuning parameters in a short computation

time.

The primary obstacle for the mathematical optimization community to contribute al-

gorithms for performance tuning is the high startup cost associated with developing math-

ematical formulations of autotuning problems and subsequently transforming, compiling,

and running the corresponding codes. An easy-to-use test suite of well-defined mathe-

matical optimization problems in autotuning addresses this issue. A mathematical opti-

mization researcher can use the test suite to develop and test new numerical optimization

algorithms. The results and insights obtained can provide recommendations for optimiza-

tion algorithms based on particular problem characteristics. Given an autotuning task,

a performance-tuning researcher can then adopt an optimization algorithm based on the

search problem characteristics. Currently, doing so is difficult because few systematic tests

of optimization algorithms exist for typical autotuning problems. In fact, recent successes

of performance tuning in mathematical optimization have focused on obtaining parameters

for other optimization algorithms (e.g., [3]), these codes being most familiar to optimizers.

A rich history in mathematical optimization of sets of benchmark problems exists. Ex-

amples include the Moré-Garbow-Hillstrom problems for unconstrained optimization [4];

the more general CUTEr set [5] (a subset of which was used as the inputs in [3]); and the

smooth, noisy, and nonsmooth problems in [6]. These benchmarks are attractive for several

reasons, including (1) providing a rigorous definition of a set of easily obtained problems; (2)

absolving algorithm developers from controversial decisions related to problem formulation,

scaling, and input parameter decisions; (3) mitigating particularly unusual behavior (e.g.,

seen on only a single problem); and (4) defining a self-contained, fixed set to avoid criticisms

of including only problems that show favorable aspects of a particular algorithm. In addi-

tion to these characteristics, an ideal set would be large enough to yield diverse problems

(rather than containing a single problem) but not too large to be prohibitively expensive,

which would prevent one from running the benchmark set in its entirety. As evidenced by

their citation counts, these benchmark sets are used extensively by the optimization com-

munity. The usual benchmarking caveats apply: performance of an optimization algorithm

on the set is not a guarantee that it will perform similarly on all other problems, and hence

one should avoid both “overfitting” and making extrapolations far beyond the set. How-

ever, results on the benchmark sets can still provide valuable feedback to developers on the

algorithmic features expected to be most important; and they are a first step in developing,

for example, specialized algorithms for classes of performance-tuning problems.

In this paper, we present a collection of extensible and portable search problems in

automatic performance tuning (SPAPT). It comprises representative problems from a num-
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ber of lower-level, serial performance-tuning tasks in scientific applications. As a starting

point, we fill the initial test suite with primarily dense linear algebra kernels because they

are ubiquitous and well understood by the performance-tuning and scientific computing

communities. We implement problems in a format that can be readily processed by Orio

[7], a recently developed autotuning software framework. By making Orio a tool for trans-

forming and running code for SPAPT and defining specific search problems, our first goal

is to attract the mathematical optimization community to help advance the field of auto-

tuning. With the benchmark set, our second goal is to enable performance engineering and

mathematical optimization researchers to conduct rigorous algorithmic development and

experimental studies on search algorithms in autotuning.

SPAPT comprises kernel codes that run on a single node. There are two main reasons

for this design choice. First, we wanted SPAPT to be an easily usable and portable test suite

from the perspective of the mathematical optimization community. As a first step, we did

not include parallel codes that need large computational clusters and/or leadership-class

machines because the mathematical optimization researchers might have limited access to

these machines. However, given that modern single-node machines—including desktops and

laptops—come with multiple cores, search problems in SPAPT contain OpenMP directives

as code transformation techniques. Second, since clusters are built by connecting single

nodes via a network, any improvements in single-node performance may help with overall

performance of certain applications. Third, single-node performance tuning is relevant in

a number of kernels where the communication cost between the processor and the memory

hierarchy is a bottleneck for the performance.

The two major contributions of the paper are as follows: (1) SPAPT, a first attempt to

bring the optimization and performance-tuning research communities together and enable

interdisciplinary research; and (2) ready-to-use test suite of well-defined mathematical op-

timization problems, each consisting of a relatively well-known kernel, an input size, a set

of tunable decision parameters, a feasible set of possible parameter values, and an initial

configuration of these parameters and constraints. With SPAPT, we perceive that numerical

optimization and autotuning research communities will get a new class of problem to tackle

and effective optimization algorithms, respectively.

2 Related Work

Balaprakash et al. [2], Kisuki et al. [8], Qasem et al. [9], Seymour et al. [10], Shin et al. [11],

and Tiwari et al. [12] used a number of linear algebra kernels for autotuning. Pouchet [13]

adopted a collection of reference implementations, which comprises linear algebra kernels,

solvers, stencils, and data-mining codes. These codes have pragma delimiters for OpenMP

and loop bounds for autotuning with a polyhedral model. Norris et al. [7] used a collection

of linear algebra kernels, solvers, and stencils. These are parameterized codes that were used

to test the effectiveness of Orio. In all these works, the kernels are often parameterized to

illustrate the effectiveness of autotuning, but there is limited empirical analysis of the search

algorithms applied to kernels with a large number of parameters that have wide ranges of
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input sizes. Recently, Kaiser et al. [14] proposed the TORCH testbed, a set of reference

kernels to enable software and hardware codesign. These kernels are broadly classified

into linear algebra, grid, spectral, particle, Monte Carlo, graphs, and sort kernels. The

authors discuss possible code optimization strategies that can be applied to these kernels.

Nevertheless, parameterization and search problem specifications are not part of the testbed.

Kaiser et al. [14] argue that a number of existing test suites can be seen as reference

implementations of one or more kernels from TORCH. Examples include EEMBC [15],

HPC Challenge [16], Parboil [17], SPEC [18], NAS Parallel test suites [19], PARSEC [20],

Rodinia [21], LINPACK [22], STREAM [23], STAMP [24], SPLASH [25], and pChase [26].

Although in principle these test suites can be parameterized and used for autotuning, none is

developed specifically for evaluating the performance of the search problem in autotuning.

Hence, a noticeable void exists in the literature of test suites of well-formulated search

problems in autotuning.

The SPAPT set that we propose in this paper is based on [7, 13, 14] and comprises rep-

resentative examples from dense linear algebra computations. However, SPAPT differs from

other test suites in the following way: it is the only test suite in the autotuning literature

that is exclusively designed for developing and benchmarking optimization algorithms. In

SPAPT, we make only the search problem a transparent entity—one can easily integrate

an optimization algorithm to tackle the search problem without knowing the fine details

related to the code transformation techniques, compiler specifics, and target machine.

3 Test Suite

We use the term kernels to refer to (deeply) nested loops that arise frequently in a number

of scientific application codes. Because they contribute significantly to the overall execu-

tion time, tuning these kernels significantly improves overall application performance [27].

A range of transformations can be applied to better utilize the memory hierarchy and to

help exploit shared-memory parallelism on multicore machines. The SPAPT benchmark that

we propose in this paper comprises 18 such kernels. These kernels are grouped into four

groups. Elementary linear algebra kernels involve a set of mathematical computations

performed on scalars, vectors, and matrices. Because of the wide range of applications that

adopt these kernels, autotuning these kernels is a popular topic of research and develop-

ment. In this group we have ten kernels that consist of elementary linear algebra operations

such as vector/matrix/tensor multiplications and transposes; see Table 1 for a summary of

the operations involved. Linear solver kernels find solutions to a system of linear equa-

tions. In this group, we have kernels from the BiCGStab linear solver (BiCG) and LU, which

decomposes a matrix into a product of lower and upper triangular matrices. Stencil code

kernels follow a regular pattern to access and update array elements. They are commonly

used in implicitly and explicitly solving partial differential equations [28]. In this group, we

have four kernels from ADI preconditioners (ADI), Jacobi 1-D (Jacobi-1d), Seidel stencil

(Seidel), and 3-D stencils computations (Stencil3d). Elementary statistical comput-

ing kernels are here represented by correlation (COR) and covariance (COV) computations.
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Table 1: Collection of test suite kernels.

Parameters

Kernel Operation ni nb |D|
Elementary linear algebra kernels

ATAX matrix transpose & vector multiplication 13 6 1.65e+14

DGEMV scalar, vector & matrix multiplication 38 11 2.73e+30

FDTD4d2d finite-difference time-domain kernel 25 5 7.06e+24

GEMVER vector multiplication & matrix addition 18 6 7.26e+17

GESUMMV scalar, vector, & matrix multiplication 8 3 1.56e+08

HMC Hessian matrix computation kernel 7 8 1.01e+08

MM matrix multiplication 10 4 1.83e+12

MVT matrix vector product & transpose 6 6 1.38e+08

Tensor tensor matrix multiplication 17 3 5.49e+16

TRMM triangular matrix operations 20 5 5.33e+19

Linear solver kernels

BiCG subkernel of BiCGStab linear solver 9 4 9.33e+09

LU LU decomposition 9 5 1.86e+10

Stencil code kernels

ADI matrix subtraction, multiplication, & division 16 4 6.05e+15

Jacobi-1d 1-D Jacobi computation 8 3 1.55e+08

Seidel matrix factorization 12 3 6.86e+11

Stencil3d 3-D stencil computation 24 5 2.35e+23

Elementary statistical computing kernels

COR correlation computation 16 4 6.05e+15

COV covariance computation 20 5 5.33e+19

They involve finding statistical relationships among a number of random variables, a task

that is central to many statistical packages. The reference implementations are obtained

from [13], where the author made a similar classification of kernels.

We take a search problem in SPAPT to mean a specific combination of a kernel, an

input size, a set of tunable decision parameters, a feasible set of possible parameter values,

and a default/initial configuration of these parameters for use by search algorithms. When

combined with a specific machine and a single performance objective f , both discussed

further in Section 4, this search problem is equivalent to the mathematical optimization

problem
min
x

f(x)

x = (xB, xI) ∈ Ω,

such that xBj ∈ {0, 1}, j = 1, . . . , nb,

xIj ∈ {lj , · · · , uj}, j = 1, . . . , ni,

(1)

where B and I denote a partitioning of the parameter vector x into nb binary and ni
integer scalars, respectively. Details on modeling and formulating problems such as (1)

are given in [2]. We denote the collective feasible set for a given problem by D, which is
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defined by three classes of constraints. Bound constraints: All the parameters of the

search problems are constrained to lie within lower and upper bounds. Examples of these

constraints include loop unroll jam, where the values are positive and take integer values up

to an upper bound. Known constraints: We have two subclasses of known constraints.

The first subclass is algebraic constraints, where the time required to verify the feasibility

(x ∈? D) of an arbitrary point x ∈ Rn is negligible relative to the time required to evaluate

the objective f(x); for example, limiting two register tiling parameters RTI , RTJ , to certain

values satisfying RTI ∗RTJ ≤ 150. The second subclass is general constraints that require

execution of the code and could be as expensive to evaluate as the objective; for example,

power consumption of a code run < 90 W. In all these constraints a quantifiable measure of

constraint violation is available. From a mathematical optimization perspective, this is an

important measure since it can help the optimization algorithm move away from regions of

infeasibility. Hidden constraints: These constraints are attributed to unsuccessful code

evaluations that occur as a result of transformation, compilation, and runtime errors. While

failure at the code transformation phase is relatively cheap, failure due to runtime errors

is expensive. In all these cases, a nonbinary measure of violation is not available; hence,

dealing with these constraints can be difficult.

From each tunable kernel, we generate four search problems. For example, for the

ATAX kernel, we have ATAX.N.01, ATAX.N.02, ATAX.N.03, and ATAX.01.N.nb. The naming

conventions take the following meaning: N.01 is the (reference) input size in ATAX.N.01;

N.02 > N.01 and N.03 > N.01 are the input sizes in ATAX.N.02 and ATAX.N.03, respec-

tively. Note that the reference input size is not limited to single-dimensional or square

inputs; for nonsquare or multidimensional inputs, instead of N , we have {N1, N2, N3, . . .}.
ATAX.N.01.nb is obtained from ATAX.N.01 by fixing the value of all binary parameters

to 0 (so that only integer decision parameters are considered; nb refers to “no binary pa-

rameters”). The reason for explicitly including nb problems is that they can serve as an

entry point for continuous numerical optimization algorithms that treat integer parameters

similar to real-valued ones.

We define the initial configuration of a problem as that obtained by setting each integer

variable to its lower bound and each binary variable to 0 (false). Note that this corresponds

to the base implementation without any code transformation and optimization. From a

mathematical optimization standpoint, the starting point can be important. Other starting

points can be used on these problems; but to provide a well-defined, platform-independent

starting point, we set the lower bound as a default. In addition to the goals discussed in

Section 1, these problems enable us to study the impact of input size on performance tuning

and to analyze the smoothness in the search space (e.g., because binary decisions such as

enabling or disabling OpenMP often create discontinuities in the search space).

Table 1 gives a high-level overview of each kernel. Whenever applicable, we adopt

the following general-purpose, parameterized tuning directives: loop unroll/jamming (UJ),

cache tiling (CT), register tiling (RT), scalar replacement (SR), array copy optimization

(AC), loop vectorization (LV), and multicore parallelization using OpenMP (OMP). The

Orio implementations of these transformations are described in [7].

6



The set of possible parameter values used for tuning directives is not comprehensive. We

used manually selected values that are not dictated by any particular machine. However,

the search space can be improved (reduced) by more careful selection of these parameters.

SPAPT will evolve to take into account architectural features as it is used.

SPAPT is intended to be used for evaluating the search approaches in any autotuning

system. We use Orio [7] as an initial framework because it is open source, flexible, easy

to use, and provides a large number of transformations. It takes an Orio-annotated C or

Fortran implementation of a problem as input, generates multiple transformed code variants

of the annotated code, empirically evaluates the performance of the generated codes, and

has the ability to select the best-performing code variant using some popular heuristic search

algorithms. Orio annotations consist of semantic comments that encode the computation. A

separate tuning specification contains various parameterized performance-tuning directives

and sizes of inputs to consider. In addition to the general-purpose tuning directives such as

UJ, CT, RT, SR, AC, LV, and OMP, Orio supports a number of machine-specific optimizations

(e.g., generating calls to SIMD intrinsics on Intel and Blue Gene/P architectures). We refer

the reader to [7] for a detailed account on annotation parsing and code generation schemes

in Orio.

By integrating SPAPT with Orio we provide an immediate demonstration of its use and

enable future use by other autotuning packages as interfaces to them are added during Orio

development (Orio already interfaces to a number of third-party transformation and search

tools and will continue to add more). However, the defined mathematical optimization

problems in SPAPT are not Orio-specific and can be reimplemented in any other framework

that supports the discussed transformations.

In Table 1, the column |D| shows, for each kernel, the number of feasible decision points,

which ranges between 1.01e + 08 and 2.73e + 30. SPAPT is made available for download

with Orio. Readers can also browse the benchmark set at http://trac.mcs.anl.gov/

projects/performance/browser/orio/testsuite/SPAPT.v.01.

4 Illustrative Experiments

In this section, we present an illustrative experimental study using several problems from

the benchmark set. Based on the results of this study, we discuss some of the characteristics

of problems in SPAPT that are relevant for autotuning.

Experiments are carried out on dedicated nodes of a cluster in which each node contains

two Intel Nehalem series quad-core 2.53 GHz processors, 64 KB L1 cache/core, 256 KB L2

cache/core, and 36 GB of memory running the stock Linux kernel version 2.6.18 provided

by RedHat.

4.1 Effect of cache misses and the impact of performance metric choice

When a code is transformed and compiled with respect to a given parameter configuration,

typically it has to be run on the target machine a number of times to overcome variations

resulting from factors such as operating system noise and compulsory, capacity, and conflict
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Table 2: Estimated mean and standard deviation of the runtime for 35 runs at the initial

parameter configuration.

Problem ADI ATAX BiCG COR COV DGEMV FDTD4d2d GEMVER GESUMMV

µ̂init 0.5830 0.0052 0.0040 0.0009 0.0007 0.2697 0.7751 0.0742 0.0260

σ̂init 2.52e-05 4.90e-05 1.52e-05 8.93e-06 1.95e-06 4.30e-03 2.00e-04 7.83e-05 8.61e-05

Problem Hessian Jacobi-1d LU MM MVT Seidel Stencil3d Tensor TRMM

µ̂init 0.1679 0.0004 0.6969 0.0114 0.0009 0.2286 0.0992 0.2696 0.2252

σ̂init 2.78e-05 5.16e-06 8.27e-04 2.13e-05 3.00e-05 4.62e-05 4.11e-05 3.11e-04 1.65e-04

cache misses. Hence, modeling decisions related to the performance objective can play a

significant role in the tuning process, in particular, when we have a priori knowledge on

the data access patterns of the given application. In SPAPT we intentionally do not specify

a fixed form of the objective because it can depend heavily on the target machine and the

choice of the performance metric (e.g., runtime, flops, or power). Also, we target problems

on which no a priori knowledge is available or all the knowledge on access patterns are

exploited and there is still room for performance improvements. On the other hand, a

priori knowledge can benefit performance objective modeling substantially.

In our exploratory studies, we consider minimizing the runtime for each problem. Many

performance metrics can serve as an optimization objective in (1), including

f(x) =
1

m

m∑
i=1

ri(x), f(x) = mediani=1,...,mri(x), f(x) = min
i=1,...,m

ri(x), f(x) = r3(x),

where {r1(x), . . . , rm(x)} denote a sequence of m runtime realizations (replications) for

parameter configuration x, and these objectives denote the mean, median, minimum, and

third realized time, respectively. Performance objectives other than the mean, including

those given above and quantile-based metrics, can be adopted based on the ultimate goals

of the performance tuning process.

Next we discuss various considerations related to performance objectives given m = 35

consecutive replications, without flushing the data from cache, for each run. The sam-

ple mean runtime is often used to approximate uniform system conditions because it can

asymptotically reduce nondeterministic variations in the runs. In Table 2, we show the

sample mean µ̂init and standard deviation σ̂init of the runtime for 35 runs at the initial

parameter configuration for some problems with input size N . The mean is stable to three

or four significant digits considering the relative noise (σ̂init/
√

35µ̂init).

Figures 1(a) and 1(b) illustrate a comparison of the mean, median, minimum, and third

runtime values of 5,000 random parameter configurations in |D|. Note that all the config-

urations in the horizontal axis are sorted with respect to the mean, so that the mean is

monotone increasing. The results show that in a large number of parameter configurations

from ATAX.01.N (Figure 1(a)), the median, minimum, and third runtime differ significantly
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(a) ATAX.N.01 (b) stencil-3d.N.01

(c) ATAX.N.01 (d) stencil-3d.N.01

(e) ATAX.N.01

Figure 1: Comparison of performance objectives and the effect of cache misses in the SPAPT

problems.

from the mean. However, these metrics are similar to each other on the results for the prob-

lem stencil-3d.01.N (Figure 1(b)). Since the ATAX and stencil3d kernels are memory-

and computation-bound, respectively, the former is more sensitive to cache misses than

the latter. Figures 1(c) and 1(d) show the percentage of configurations with maximum

runtime for each replication number. For ATAX.01.N, in 80% of 5,000 configurations, the

first run has the maximum runtime, whereas in stencil3d this drops to 25%. Figure 1(e)

shows the runtime realizations as a function of the replication number for the initial con-

figuration of ATAX.01.N. As expected, the execution times of the first few runs are longer

than those of the other runs. Note that the performance objective of the third runtime

value is explicitly designed to take this into account. We observed that the trend of results

from ADI.01.N, BiCG.N.01, COR.N.01, COV.N.01, GEMVER.N.01, Jacobi.N.01, MVT.N.01,

Seidel.N.01, Tensor.N.01, and TRMM.N.01 is similar to ATAX.01.N and others are similar

to Stencil-3d (see the online appendix [29]).

From the modeling perspective, these results imply that when a kernel is highly sensitive

to cache misses, one has to be careful choosing the performance objective. Inside an appli-

cation, if the data required for a particular kernel is normally not present in cache when
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the kernel is executed, the tuning process must reflect this by flushing the cache for each

replication. On the other hand, even if the kernel is highly sensitive to cache misses but it is

known that the required data is present in cache when the kernel is invoked, then we must

ignore first few repetitions during tuning. Further, when the kernel is compute-bound and

not sensitive to cache misses, tuning with a large number of repetitions results in a waste

of resources. In such cases, the third runtime value is a good choice. In the rest of this

section, we use the widely adopted mean runtime (in 35 replications) as the performance

metric.

In this experimental setup, the impact of secondary effects such as branch predictions,

improved fetch, load aliasing, and instruction decoding and its related consequence are not

included in the performance metric. The Orio framework that we use does not support

removal of the secondary effects beyond the ability to control the number of replications.

4.2 Impact of the target machine

We now analyze the impact of different machines on the mean runtime of the parameter

configurations from SPAPT problems. In addition to the Intel Nehalem cluster, we use

two large-scale leadership computing machines: IBM Blue Gene/P and Cray XE6. Each

node of the Blue Gene/P contains IBM PowerPC 850 MHz quad-core processors with 32

KB L1 cache, 4 128 byte-line buffers L2 cache, 8 MB L3 cache, and 2 GB of memory

running Compute Node Kernel OS. Each node of the Cray XE6 contains 2 twelve-core

AMD MagnyCours 2.1 GHz processors with 64 KB L1 cache, 512 KB L2 cache, 6 MB L3

cache, and 32 GB of memory running Cray Linux Environment OS.

Figure 2(a) shows the mean runtime correlation between the IBM Blue Gene/P and

Intel Nehalem cluster for configurations from ATAX.N.01. We observe that high-performing

parameter configurations for the the Intel Nehalem cluster (mean runtime between 0.001

and 0.005 seconds) obtain poor mean runtimes (between 0.02 and 0.04 seconds) on the IBM

Blue Gene/P and vice versa. We found that enabling OpenMP in the Intel Nehalem nodes

degrades the performance of the code because of the OpenMP overhead. On the IBM Blue

Gene/P, however, it leads to performance improvements because this machine has slower

processors and a smaller cache size and less memory per core. The two distinct clusters of

configurations in Figure 2(a) correspond to the codes with OpenMP enabled and disabled.

Nevertheless, the Intel Nehalem cluster is closer to the Cray XE6 in terms of computing

power and memory. From Figure 2(b), we can observe that the mean runtime of the

parameter configurations run on the Intel Nehalem cluster and the Cray XE6 exhibit high

correlation. From the results, we expect that generalization of parameter configurations

depends on the kernel and the target machines.

4.3 Performance objective density

A naive way to assess the difficulty of an optimization problem in SPAPT consists of sam-

pling parameter configurations at random and measuring the density of their performance

objectives. Figure 3 shows histograms of the objective values obtained on 5,000 random pa-
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(a) Intel Nehalem cluster and IBM Blue Gene/P (b) Intel Nehalem cluster and Cray XE6

Figure 2: Mean runtime correlation between the configurations on the SPAPT problem

ATAX.01.N.

rameter configurations on different problems from SPAPT. We observe that for ADI.N.01 and

FDTD4d2d.N.01, the number of high-performing parameter configurations is low compared

with that for BiCG.N.01 and Seidel.01.N. We expect that a simple random search can find

high-performing configurations in short computation time for BiCG.N.01 and Seidel.01.N,

whereas ADI.01.N and FDTD4d2d.N.01 might require sophisticated search algorithms. The

performance objective density plots for other problems are given in the online appendix [29].

Given the large search space of the optimization problems and the number of random pa-

rameter configurations considered, the density results should be treated as baseline results;

they should not be taken as an exhaustive metric for assessing the difficulty of solving a

particular search problem in the benchmark.

(a) BiCG.N.01 (b) Seidel.N.01

(c) ADI.N.01 (d) FDTD4d2d.N.01

Figure 3: Illustrative histogram of mean runtime from 5,000 random code variants in D on

SPAPT problems.
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(a) DGEMV.N.01 and DGEMV.N.02 (b) MVT.N.01 and MVT.N.02

Figure 4: Illustrative results on mean runtime correlation between the configurations on

SPAPT problems.

4.4 Impact of input size

Another factor that plays a crucial role in autotuning is the size of the arrays involved in

the computation. In most cases, tuning has to be performed for a number of different input

sizes because the best parameter configuration obtained for one input size is not necessarily

the best for a different input size. In some cases, however, parameter configurations can be

generalized. This is illustrated in Figures 4(a) and 4(b), which show the correlation between

the objectives for different input sizes for two kernels. In problems based on the MVT kernel

(Figure 4(b)), a large number of high-performing parameter configurations for input size

N.01 become less effective for input size N.02. This result occurs because transformations

targeting different levels of the memory hierarchy would not produce the same effect on a

computation that can fit in registers or L1 as they would on an instance that does not fit in

any level of cache. Nevertheless, the results for problems based on the DGEMV kernel (Figure

4(a)) show that high-performing parameter configurations are generalizable for certain types

of computations. We also observe some correlations in ADI, GESUMMV, and Stencil3d (see

[29]).

5 Conclusions and Future Directions

Motivated by a lack of a test suite of search problems in autotuning, we developed SPAPT.

Each problem in SPAPT is a well-defined mathematical optimization problem based on a rep-

resentative kernel from a scientific application, parameterized tuning directives, acceptable

values for each parameter, input sizes, and an initial configuration for search algorithms.

To the best of our knowledge, SPAPT is the first test suite in the autotuning literature that

is designed for analyzing and benchmarking mathematical optimization algorithms. We

implemented all these problems in an annotation-based language that can be processed by

Orio, a recently developed performance tuning software framework. We conducted experi-

ments to show performance impacts of problem characteristics such as choice of performance

objectives, noise, effect of cache misses, target machines, and input sizes.

SPAPT has the potential to improve the state of the art in autotuning. On the one

hand, our easily accessible, portable Orio implementation of the test suite can encourage

mathematical optimization researchers to develop optimization algorithms without know-
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ing the fine details of compiler optimization and performance tuning. On the other hand,

the autotuning community will benefit from better algorithms and can use SPAPT to con-

duct systematic experimental studies of the existing optimization algorithms and better

understand the role that different transformations play.

In addition to the limitations of any test suite described in Section 1, SPAPT has the

following limitations at present. It deals only with codes that run on a single node and

does not provide any codes that run on parallel machines. In future suites, we plan to in-

clude sparse matrix kernels, parallel codes, and kernels from other well-known benchmarks

such as TORCH. Moreover, we will extend the application space and numerical and sci-

entific problem domain coverage of the test suite. We used only the set of parameterized

code transformations supported by Orio. While these transformations are highly relevant

for single-node performance, distributed-memory, parallel codes demand a different set of

transformations. Both SPAPT and Orio will evolve taking this into account. We will use

SPAPT to understand the search problem characteristics, to benchmark existing optimiza-

tion algorithms, and to develop efficient optimization algorithms for autotuning. We will

investigate further the impact of different target machines on the performance objectives of

the SPAPT problems. We also intend to build a database of tabulated execution times to

further facilitate benchmarking of search algorithms.
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